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Abstract: 

Tumor immunotherapies have provided clinical benefits, yet great potential remains for 

optimizing therapeutic effects. Here, we show that low NAD+ levels restrict the function of 20 

tumor infiltrating T lymphocytes (TILs). TILs harvested from human ovarian tumor tissues 

showed decreased NAD+ levels compared with T cells from paired peripheral blood samples. 

The combination of whole-genome CRISPR and large-scale metabolic inhibitor screens 

implicated the NAD+ biosynthesis enzyme nicotinamide phosphoribosyltransferase (NAMPT) is 

required for T cell activation. Further isotopic labeling and LC-MS studies confirmed that NAD+ 25 

depletion suppressed mitochondrial energy biosynthesis in T cells. Excitingly, NAD+ 

supplementation significantly enhanced the tumor cell-killing efficacy of CAR-T cells ex vivo, 

and extended animal survive in both adoptive CAR-T model and immune checkpoint blockade 

treatment models in vivo. This study demonstrates an over-the-counter nutrient supplement 

NAD+ could robustly boost the efficacy of T cell-based immunotherapy and provides insights 30 

into the cellular basis of T cell metabolic reprogramming in treating cancers. 

One Sentence Summary:  

NAD+ supplementation during cancer immunotherapies significantly enhances T cell 

activation and tumor killing capacity. 

Main Text: 35 

Cancer immunotherapies including adoptive transfer of naturally-occurring tumor 

infiltrating lymphocytes (TIL) and genetically-engineered T cells, as well as the use of immune 

checkpoint inhibitors to boost the function of T cells have emerged as promising approaches to 

achieve durable clinical responses of otherwise treatment-refractory cancers 1-5. Although cancer 

immunotherapies have been successfully utilized in the clinic for subsets of patients, there are 40 

several limitations which prevent the broad use of these therapies for entire patient populations 
6,7. Given the function of T cells as key mediators for tumor destruction, their characteristics 

(e.g., durability, longevity, and killing efficiency, etc.) substantially determine the clinical 

outcomes of many immunotherapies 8-11. Studies have established that successful clearance of 

tumors mediated by infiltrated T cells can be limited by physical barriers generated by stroma 45 
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cells 12, immuno-suppressive networks 13, and nutrient limitations within the microenvironment 
14,15. Thus, efforts to promote the stemness, proliferation and activation capacity of T cells should 

enable improvements to the efficacy of cancer immunotherapies.  

Recently, cellular metabolic processes have been reported to shape T cell differentiation and 

functional activity 16-18. Modulation of metabolic process such as fatty acid catabolism can 50 

improve T cell activation and therapeutic function 19-24. It was also reported that there is a strong 

link between metabolic activity in tumor infiltrated T cells (TIL) and their effector function 25,26, 

and stimulation mitochondrial biogenesis via enforced expression of PGC1α resulted in superior 

anti-tumor function of T cells 23. These studies reinforce that efforts on investigating immune 

response and metabolic regulations required for TILs when combating with tumors will help us 55 

to understand the bio-energetic requirements of T cell function and help in the optimization of 

tumor immunotherapies. 

Seeking to identify genes involved in the regulation of T cell activation, we performed a 

genome-wide CRISPR screen which containing over 250,000 total sgRNA using the Jurkat T 

cell line by adopting a previously reported sgRNA-based strategy 27. Subsequently, we analyzed 60 

our Jurkat T cell screening data alongside the previously reported primary human T cell data 28 

and identified the top 50 target gene hits common to both screens (Fig. 1a green dots, Extended 

Data Fig. 1a, and Supplementary Table 1). In concert with this genetic screen, and aiming to 

identify the metabolic pathways that are essential for T cell activation, we also undertook 

chemical screens of both Jurkat T cell and primary human T cells using the 199 compounds of 65 

the Metabolism Compound Library (Selleck, L5700) and monitoring T cell activation with 

multiple markers (Fig. 1b-d and Extended Data Fig. 1b).   

Combined analysis of the genetic and metabolic screen data revealed the conspicuous 

commonality of the NAD+ biosynthesis enzyme nicotinamide phosphoribosyltransferase 

(NAMPT) (Fig. 1a-d and Extended Data Fig. 1a-b). Specifically, the NAMPT gene identified by 70 

both of the sgRNA CRISPR screens, and three of the small molecule compounds from the library 

known to target NAMPT (FK866, STF-118804, and GMX1178) ranked among the most 

disruptive compounds to T cell activation. These analyses also revealed that all three of the 
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NAMPT inhibitors apparently had more pronounced effects on activation of CD8+ T cells than 

on CD4+ T cell activation (Fig. 1c-d and Extended Data Fig.S1b).  75 

To confirm the essential role of NAD+ in T cell activation, we treated anti-CD3 and anti-

CD28-stimulated human primary T cells with the NAD+ synthesis inhibitor FK866. The 

stimulatory effects were remarkably repressed by inhibition of NAD+ biosynthesis: FK866 

treatment drastically reduced the up-regulation of T cell activation markers such as CD69, CD25, 

and ICOS, and apparently blocked the increase of cell size of activated T cells (Fig.1e and 80 

Extended Data Fig. 1c). We observed similar effects upon FK866 treatment of expanded primary 

T cells (Extended Data Fig. 1d-e, and 1g). And, we found that the intracellular NAD+ level could 

be significantly increased by simply adding NAD+ into culture medium (Extended Data Fig. 1d), 

suggesting direct cellular NAD+ uptake in T cells, which has also been reported in macrophages,  

neuronal cell and hepatoma cells 29,30. Further, assays with Jurkat cells showed that the NAMPT 85 

inhibitors FK866 and STF-118804 suppressed cell activation upon anti-TCR stimulation in a 

dose-dependent manner (Extended Data Fig. 1f, 1j-m), and this suppression was achieved in 

multiple stimulation contexts (Fig. 1f and Extended Data Fig. 1h).  

We next examined the effects of these inhibitors on T cell signaling events, including 

calcium flux and phosphorylation of T cell signaling proteins such as ZAP70, LCK, and ERK. 90 

FK866 treatment significantly decreased both calcium flux and the phosphorylation levels of T 

cell signaling proteins in stimulated Jurkat cells (Fig.1g-i, and Extended Data Fig. 1i). 

Importantly, this potent repression could be rescued by adding exogenous NAD+ in the cell 

culture medium (Fig.1e-i, Extended Data Fig. 1c-i, 1k, and 1m). These results together establish 

that NAD+ is required for T cell activation. 95 

Previous studies have reported that metabolic stress can impair the function of TILs 24 and 

can also limit their reinvigoration capacity 31. We therefore examined intracellular NAD+ levels 

in TILs by analyzing paired T cells from peripheral blood mononuclear cells (PBMCs) and TILs 

from 16 ovarian cancer patients. We also analyzed paired T cells from spleen and TILs from 8 

melanoma allograft mice. In both sample types, the NAD+ levels were significantly lower in the 100 

respective TILs as compared to paired T cells in patients’ PBMCs and to paired T cells in murine 

spleen, separately (Fig.1j-k). Since it was reported that NAD+ level was higher in activated T 
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cells 32, we concluded that the decreased NAD+ level in tumor infiltrated T cells was caused by 

tumor microenvironment instead of T cell activation state. We also analyzed the differentially 

expressed genes between TILs and T cells in PBMCs from a mouse model of autochthonous 105 

melanoma, which revealed enrichment for the nicotinate and nicotinamide metabolism KEGG 

pathway (Extended Data Fig. 2a). These results suggest that decreased NAD+ levels in TILs may 

contribute to the previously reported decreases in the killing capacity and reinvigoration capacity 

of TILs under metabolic stress. 

NAD+ fluxes have been reported to vary widely across different cell types and tissues, and 110 

accordingly, different NAD+ synthesis pathways, which feature specialized enzymes, are adopted 

by each cell type 33,34. To evaluate the major NAD+ synthesis pathway in T cells, we conducted 

an sgRNA screen in anti-TCR stimulated Jurkat T cells for 94 genes with NAD+-related 

functions concatenated in a previous review paper 35. This again revealed that NAMPT is 

essential for T cell activation (Fig. 1l, and Extended Data Fig. 2b-c, and 2e), and subsequent 115 

experiments confirmed  that knockdown of NAMPT decreased the NAD+ level by more than 

50%, illustrated the salvage NAD+ synthesis pathway as the main NAD+ source in T cells 

(Extended Data Fig. 2d). 

Enzymes of the Sirtuin and PARP families which used NAD+ as a substrate are known to 

exert functions in, respectively, epigenetic regulation and in DNA damage repair 36,37. However, 120 

we found that inhibition of these enzymes with either sgRNA knockout or pharmacological 

inhibitors caused no significant changes to Jurkat T cells activation (Fig.1l and Extended Data 

Fig. 3a-d), suggesting that the NAD+'s role as a substrate for using in epigenetic regulation and 

DNA damage repair processes may be less relevant to T cell activation than its role as a cofactor 

in metabolic process.  125 

To further assess NAD+ mediated regulation of T cell activation, we performed LC-MS 

based metabolite profiling of FK866-treated and control Jurkat T cells. We found that such 

inhibition of NAD+ synthesis resulted in significantly altered levels of metabolites of the 

glutaminolysis, glycolysis, and citric acid cycle pathways, findings indicative of decreased 

mitochondrial oxidative phosphorylation (Fig. 2a-b). We also repeated the LC-MS experiment 130 

with human PBMC cells, and glycolysis and citric acid cycle pathway were also decreased in 
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FK866 treated PBMC cells (Extended Data Fig. 4a-c), indicating NAD+ metabolism regulates 

mitochondrial oxidative phosphorylation in both Jurkat T cells and PBMC cells. Further isotopic 

labeling experiments using 3H-3-Glucose and 14C-U-Glutamine confirmed the inhibitory effect 

of FK866 treatment on glycolysis and glutaminolysis (Fig. 2c-d). Consistent with a NAMPT-135 

mediated regulation of mitochondrial oxidative phosphorylation, FK866 treatment of Jurkat T 

cells caused significant decreases in lactate, citric acid, succinic acid, oxoglutaric acid, as well as 

increases in glucose and glutamine (Extended Data Fig. 5). Since the majority of ATP is 

generated in the TCA cycle 38, we propose that NAD+ levels apparently regulate the energy 

generation functions of mitochondria in T cells. Transmission electron microscopy (TEM) 140 

showed that depriving Jurkat T cells or primary T cells of NAD+ (either by inhibitor treatment or 

by knocking down NAMPT) significantly decreased the number of mitochondria and reduced the 

maximum width of cristae (Fig. 2e-f, and Extended Data Fig. 6a-c, 6f). And mitochondrial 

oxygen consumption rate measurements in Jurkat T cells or primary T cells cells showed that 

inhibition of NAD+ biosynthesis weakened the respiratory capacity of mitochondria (Fig. 2g, and 145 

Extended Data Fig. 6d, 6g). Consequently, the total cellular level of ATP was also decreased in 

NAD+ deprived cells (Fig. 2h-i, and Extended Data Fig. 6e).  

Although these results link T cell activation and intracellular ATP levels, we wanted to 

determine if there is a direct causal relationship. To this end, we used various strategies to 

manipulate glucose catabolism, glutamine catabolism, and intracellular ATP levels (Extended 150 

Data Fig. 7). Culturing Jurkat T cells with glucose or glutamine free medium (Extended Data 

Fig. 7a, 7c), and incubation of Jurkat T cells with glucose catabolism inhibitor (2-DG) or 

glutamine catabolism inhibitor (CB-839) (Extended Data Fig. 7b, 7d) could reduce Jurkat T cell 

activation. Moreover, restoration of cellular ATP levels rescued the activation capacity in all of 

these variously cultured cells (Fig. 2j-k, and Extended Data Fig. 7e-l). Collectively, these results 155 

support that NAD+ modulates T cell activation by regulating mitochondrial energy production. 

Our findings prompted us to further examine the effect(s) of NAD+ supplementation on 

CAR-T cell function in solid tumors. Notably, recent studies have reported that NAD+ precursor 

supplementation is an effective strategy to protect against tissue aging and to lengthen life spans 
39-41. We first confirmed the role of intracellular NAD+ in the anti-tumor activity of CAR-T cells. 160 

FK866 treatment significantly reduced the killing ability of anti-CD19-41BB CAR-T cells ex 
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vivo without causing significant cell death in CAR-T cells (Fig. 3a, and Extended Data Fig. 8). 

Consistently, FK866 treatment significantly reduced cytokine production by stimulated CAR-T 

cells, including GzmB (Fig. 3b), IFN-γ (Fig. 3c),  and IL-2 (Fig. 3d). To further study the NAD+ 

supplementation on T cell function, we overexpressed wild type or enzymatic dead mutant form 165 

of NAMPT (D313A) 42 in anti-CD19-41BB CAR-T cells and Jurkat T cells (Extended Data Fig. 

9a, 9d). In both cells, overexpression of wild type NAMPT, but not NAMPT-D313A, could 

significantly increase the level of intracellular NAD+ (Extended Data Fig. 9b, 9e). And we found 

that overexpression of NAMPT could significantly stimulate the activity of Jurkat cells, 

especially when treated with FK866 (Extended Data Fig. 9c). In CAR-T cells, increase NAD+ 170 

level via overexpression of NAMPT could enhance tumor cell killing ability and elevate 

cytokine production (Extended Data Fig. 9f-g). 

To study the effects of NAD+ supplementation on immunotherapy in vivo, we first adopted 

a mouse model of CAR-T therapy (Fig. 3e). Briefly, mice were firstly subcutaneously inoculated 

with K562-CD19 tumor cells. Anti-CD19-41BB CAR-T cells were then adoptively transferred 4 175 

days later via tail vein injection. To better explore anti-tumor function of NAD+ supplementation 

in vivo, CAR T cell doses were deliberately lowered to 106 cells per mouse so that CAR-T had 

suboptimal anti-tumor potency. For the NAD+ supplementation, we compared several NAD+ 

precursor compounds before eventually choosing nicotinamide (NAM); NAM treatment caused 

comparable increases in intracellular NAD+ concentrations with direct NAD+ treatment which 180 

implied the comparable therapeutic effect of NAM and NAD+ (Extended Data Fig. 10a). 

Delivery of NAM by intraperitoneal injection after CAR-T cell transfer significantly increased 

the intracellular level of NAD+ in CAR-T cells (Extended Data Fig. 10b). Notably, NAM 

supplementation alone did not affect tumor growth (Extended Data Fig. 10c). We then explored 

the effects of NAM supplementation on T cells by comparing tumor killing efficiency of adopted 185 

CAR-T cells between NAM-treated and untreated mice. Remarkably, mice of the CAR-T plus 

NAM supplementation group showed better responses to the immunotherapy: these animals were 

all tumor-free by the end of the experiment (Fig. 3f-g, and Extended Data Fig. 10d-e). NAM 

supplementation also significantly extended the survive time of mice (Fig. 3h). Immunostaining 

of xenograft tumor tissues sections also showed that there were more TILs in the NAM-treated 190 

tumors (Extended Data Fig. 10f). Taken together, these results establish that supplementation 
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with the NAD+ precursor NAM enhances CAR-T cell tumor cell killing function and improves 

the therapeutic efficacy of immunotherapy. 

Immune-checkpoint blockade (ICB) strategy-derived antibodies that block cytotoxic T 

lymphocyte associated protein 4 (CTLA4), and programmed death 1 (PD-1) or its ligand PD-L1 195 

have demonstrated unprecedented therapeutic efficacy in clinical trials, including metastatic 

melanoma and non-small cell lung cancer 43-45. However, there are still a large fraction of 

patients who have shown de novo and/or acquired resistance to ICB, probably due to cancer 

immunoediting 46, infiltrated T cell dysfunction 47, and tumor microenvironment effect 48. To 

bolster our observation further, we adopted immune-checkpoint blockade (ICB) animal model in 200 

combination with NAD+ supplementation. Briefly, B6 mice were firstly subcutaneously 

inoculated with B16F10 cells which were reported refractory to anti-PD-1 treatment to better 

evaluate the function of NAM supplementation. Then, mice were treated with NAM, anti-PD-1 

or combined. Anti-PD-1 treatment or NAM supplementation per se could mildly inhibited tumor 

growth (Fig. 4a-d). Notably, mice of the anti-PD-1 plus NAM supplementation group showed 205 

significantly better responses to the immunotherapy: the tumor growth was effectively inhibited 

and 1 of the animals was almost cured (Fig. 4a-d). NAM supplementation also significantly 

extended the survive time of mice (Fig. 4e). We also examined the percentage of tumor 

infiltrated T cells (TILs) by anti-CD3 staining of tumors, and found that anti-PD-1 treatment or 

NAM supplementation per se could significantly increase the percentage of TILs (Fig. 4f-g). 210 

Mice with combination treatment showed the highest percentage of TILs, which indicated the 

strongest immune response (Fig. 4f-g). We also used MC38 tumor cell model to study the 

function of NAD+ supplementation in conjunction with anti-CTLA-4 treatment. Again, mice with 

combination treatment of anti-CTLA-4 treatment and NAM supplementation showed the slowest 

tumor growth and longest survive (Extended Data Fig. 11a-c). In summary, NAD+ 215 

supplementation could significantly enhance immunotherapeutic effect of ICB in solid tumor 

models. 

There are three known sources of NAD+ in mammalian cells: de novo synthesis, and 

production via the Preiss–Handler (PH) or the salvage pathway 39,49. Recall our inhibitor screen 

and our NAD+ metabolism-related sgRNA CRISPR screening analyses indicating that NAD+ 220 

synthesis in T cells and especially in CD8+ cytotoxic T cells is apparently preferentially based on 
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the NAMPT-regulated salvage pathway. We also discovered from the ovarian cancer patient 

samples and mouse melanoma tumors that TILs exhibit decreased intracellular NAD+ levels 

while the malignant tumor cells are reported to exhibit much higher NAD+ levels compared to 

normal cells 33,50. Interestingly, our conditional medium culture experiment also suggested that T 225 

cells showed lower NAD+ level when cultured with conditional medium, and this could be 

rescued by addition of exogenous NAD+ (Extended Data Fig. 12). We also observed that within 

tumor microenvironment, tumor cells harbor significantly higher concentration of NAD+ 

compared to TILs (Data not shown). We speculated that the nutrient competition in the hostile 

tumor microenvironment could be one of the extrinsic regulation factors of decreased NAD+ 230 

level in TILs, though this hypothesis still need further verification.  

NAD+ is central to mitochondrial energy metabolism, and it also serves as a substrate for 

Sirtuin family members regulated deacetylation reaction and PARP family members mediated 

ADP-ribosylation 36,37,51-53. It was previously reported that a NAD+-Sirt1-Foxo1 axis controls the 

anti-tumor potential of hybrid Th1/17 cells generated from ex vivo cultures 54. In contrast to this 235 

role of NAD+ as a substrate for deacetylation and ADP-ribosylation, we here discovered that 

NAD+ can control T cell activation via regulation of energy metabolism. We found that CD8+ T 

cells, which are believed to be the main T cell population that functions in anti-tumor immunity, 

are especially sensitive to NAD+ limitation, a result emphasizing the major contribution of NAD+ 

to anti-tumor immunity. Consistently, we further established that NAD+ supplementation greatly 240 

elevates the anti-tumor function of T cells, an exciting result that immediately suggests the 

potential efficacy of such a supplementation strategy for improving immunotherapy outcomes 

generally. 
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Fig.1 NAMPT-mediated NAD+ production is essential for T cell activation. (a) Whole 

genome sgRNA screens were performed in both Jurkat and primary human T cells 28 to identify 

genes involved in T cell activation. The top 50 target gene screening hits common to both cell 380 

types (green dots). The orange dot represents the NAMPT gene. (b) Metabolic inhibitor screening 

in Jurkat (JE6) cells. Jurkat cells were pre-treated with a panel of 199 inhibitors (10nM) for 24 

hours, followed by anti-TCR stimulation for 16 hours. Cells were then stained with anti-CD69-

APC and anti-ICOS-PE-Cy7 for 40min on ice. The surface levels of these markers were 

measured by flow cytometry. (c-d) Metabolic inhibitor screening in primary human T cells. 385 

Isolated human CD8+ T cells (c) and CD4+ T cells (d) were treated with the same panel of 

inhibitors (100nM) for 24 hours, followed by transfer into well of 96-well plates pre-coated with 

anti-CD3 and anti-CD28 antibodies and cultured for 16 hours. After stimulation, cells were 

stained with anti-CD69-APC, anti-CD25-PE, and anti-ICOS-PE-Cy7 for 40min on ice. The 

surface levels of these markers were measured based on immunofluorescence. (e) Isolated 390 

human T cells among PBMCs (both CD8+ and CD4+) were pre-treated as indicated (NAD+, 

FK866 or FK866 + NAD+) for 24 hours. Cells were then transferred to a plate coated with anti-

CD3 and anti-CD28 for stimulation. Cell volumes and cell-surface expression levels of CD25, 

ICOS, and CD69 were measured using flow cytometry, respectively. (f) Cell surface expression 

level of CD69 in anti-TCR activated Jurkat cells cultured with the NAD+ synthesis inhibitors 395 

(FK866 or STF118804) or with NAD+;  Jurkat cells were first treated with inhibitors or NAD+ 

for 24 hours, followed by stimulation with anti-TCR for 16 hours. (g) Monitoring of the ERK 

phosphorylation level in Jurkat cells; Jurkat cells were treated as indicated (DMSO, FK866, or 

FK866 + NAD+) for 24 hours followed by resting in RPMI1640 medium without FBS for 1 hour. 

Then cells were further stimulated with anti-TCR antibody and collected at the indicated time 400 

points and stained with a phospho-ERK specific antibody. (h) Jurkat cells were treated as 

indicated (DMSO, FK866 or FK866 + NAD+) for 24 hours, followed by Calcium probe Indo-1 

labeling. Cells were pre-incubated with 2× anti-TCR antibody and 2 μM Ionomycin at 37oC for 5 

minutes prior to measurement by flow cytometry|. (i) Immunoblot analysis of the levels of 

phosphotyrosine, phospho-ZAP70, phospho-ERK, phospho-SRC, phospho-LCK, phospho-Zeta 405 

in Jurkat cells stimulated with anti-TCR antibody. Jurkat cells were treated as indicated (DMSO, 

FK866 or FK866 + NAD+) for 24 hours, followed by resting in RPMI1640 medium without FBS 

for 1 hour. Then cells were further stimulated with anti-TCR antibody and collected at the 
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indicated time points for immunoblotting. (j to k) NAD+ concentration measurement in paired 

TILs and T cells among PBMCs of ovarian cancer patient samples (j), and paired TILs and T 410 

cells in spleen of melanoma mouse allograft tumors (k). For TILs and T in PBMCs of ovarian 

cancer patient samples, samples were stained with anti-human CD3 antibody and isolated by 

FACS. For mouse samples, 6-week-old B6 mice were subcutaneously transplanted with 1x106 

B16F10 mouse melanoma cancer cells. Two weeks later, both tumors and spleens were 

harvested and analyzed by sorting for, respectively, CD3+ tumor infiltrated (TIL) cells and 415 

spleen CD3+ cells. (l) sgRNA screening of NAD+ metabolism related genes apparently required 

for T cell activation. JX003 cells (a single clone selected from Jurkat cells stably expressing 

Cas9) were first infected with a lentivirus expressing one of 390 sgRNAs targeting each 

previously annotated NAD+ metabolism related gene (94 genes, 4~5 sgRNA/gene, Table S3). 

The viral titer used for infection aimed to infect half of the Jurkat cell population (MOI=0.5). 420 

After seven days, cells were stimulated with anti-TCR antibody, and changes in the expression 

level of CD69 were calculated as follows: the CD69 luminescence intensity of infected Jurkat 

cells divided by the CD69 luminescence intensity of uninfected Jurkat cells. 
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Fig.2 NAD+ regulates cellular energy metabolism through the TCA cycle in T cells. (a) LC-425 

MS based metabolic profiling of Jurkat cells treated with vehicle or FK866. 1*107 Jurkat cells, 

with or without 10nM FK866 co-treatment for 24 hours. Each group comprised six replicates. 

The green dots represent the metabolites down-regulated by FK866 treatment, and the red dots 

represent metabolites up-regulated by FK866 treatment. (b) Enrichment analysis of significantly 

changed metabolites. All significantly changed metabolites were used for metabolic pathway 430 

analysis with the MetaboAnalyst 4.0. (c to d) Isotopic labeling with 3H-3-glucose (c) and 14C-U-

glutamin (d) in Jurkat cells. ** p < 0.01, *** p < 0.001. Jurkat cells were treated with FK866 for 

24 hours prior to the isotopic labeling experiments. (e to f) Representative transmission electron 

microscope (TEM) images showing the number of, and morphological changes in, mitochondria 

in Jurkat cells upon treatment (e) with inferential statistical analysis using t tests (f). * p < 0.05, 435 

*** p < 0.001. Jurkat cells were treated as indicated (Ctrl, NAD+, FK866 or FK866 + NAD+) for 

24 hours. Then cells were harvested and prepared for TEM. (g) Oxygen consumption rate (OCR) 

under the basal condition and in response to the indicated mitochondrial inhibitors. Jurkat cells 

were treated as indicated (Ctrl, NAD+, FK866 or FK866 + NAD+) for 24 hours. (h)  

ATP/ADP/AMP levels detected by LC-MS in Jurkat cells. ** p < 0.01, *** p < 0.001. 1×107 440 

Jurkat cells were treated as indicated for 24 hours. Each sample group comprised six replicates. 

(i) Cellular ATP level measured by CellTiter-Glo assay in Jurkat cells treated as indicated (Ctrl, 

NAD+, FK866 or FK866 + NAD+) for 24 hours. (j) Cellular ATP level detected by CellTiter-Glo 

assay in Jurkat cells treated with FK866 or streptolysin O (SLO) and ATP. Cells were treated 

with or without FK866 for 24 hours. Then, cells were treated with SLO for 1 hour, followed by 445 

10min of incubation with an ATP-containing solution. Cells were thoroughly washed with PBS 

before the ATP concentration measurement. (k) Immunoblot analysis of the levels of 

phosphotyrosine, phospho-ZAP70, phospho-ERK, phospho-LCK in Jurkat cells stimulated with 

anti-TCR and with or without FK866 treatment for 24 hours. Cells were then treated with SLO 

for 1 hour, followed by stimulation with anti-TCR and treatment with ATP for the indicated 450 

times.  
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Fig.3 NAD+ supplementation enhances tumor killing function of CAR-T cells. (a) In vitro 

killing assay of target tumor K562-CD19 cells expressing a mCherry reporter; this is a chronic 

myelogenous leukemia cell line that overexpresses CD19. Anti-CD19-41BB CAR-T cells were 455 

pre-treated as indicated (Ctrl, NAD+, FK866 or FK866 + NAD+) for 48 hours, followed by co-

culturing with mixed K562-CD19-mCherry and K562-WT (at a 1:1 ratio) cells at different ratios 

for 24 hours. The killing efficiency was monitored by flow cytometry and calculated as the cell 

death ratio of the K562-CD19-mCherry cells. (b to d) Cytokine production, including GzmB (b), 

IFN-γ (c), and IL-2 (d) of CAR-T cells. ** p < 0.01. CAR-T cells were pre-treated as indicated 460 

(Ctrl, NAD+, FK866 or FK866 + NAD+) for 48 hours, followed by co-culturing with K562-

CD19 cells at a 1:1 ratio for 20 hours. Prior to fixation and staining, cells were treated with the 

intracellular protein transport inhibitor Brefeldin A for 4 hours. (e) Diagram of the 

experimental strategy used in the in vivo CAR-T cell killing assays. (f to g) Ability of adoptively 

transferred anti-CD19-41BB CAR-T cells to control the growth of s.c.-established K562-CD19-465 

Luciferace tumors in NSG mice. Tumor growth was measured by bioluminescence imaging (f) 

and analyzed quantitatively (g). n=5. (h)  Log-rank test of survival curves. Ctrl group n=9, NAM 

group n=10, CAR-T group n=10, and CAR-T+NAM group n=10. 
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Fig.4 NAD+ supplementation enhances tumor killing function of anti-PD-1 treatment. (a)  470 

Bioluminescence imaging of B16F10 tumor model treated with indicated treatment (Ctrl, NAM, 

anti-PD-1, and anti-PD-1+NAM). n=5. (b) Tumor volume of individual mouse was calculated 

according to bioluminescence. n=5. (c) Tumor volume of each group was calculated according to 

bioluminescence. n=5. Data was shown as mean±SEM. (d) Relative tumor volume, normalized 

to initiate tumor volume, was calculated and plotted for each treatment group according to 475 

bioluminescence. n=5. Data was shown as ±SEM. (e) Log-rank test of survival curves. n=6. (f) 

Tumor infiltrated T cell ratio in each group was shown by FITC labelled anti-CD3 staining. (g) 

Statistical analysis of tumor infiltrated T cell percentage of each group. Data was shown as mean

±SEM. 

 480 
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